
© PyBites 2020+ 1

© PyBites 2020+ 2

PyBites Python Tips

Real World Python Tips for
the Well-Rounded Developer

(Sample ebook)

Bob Belderbos & Julian Sequeira

© PyBites 2020+ 3

PyBites Python Tips: Real World Python Tips for the Well-Rounded Developer

By Bob Belderbos & Julian Sequeira

Version 4.0.0

Copyright © PyBites (pybit.es), 2020+

Thanks for buying our book. This eBook is for your personal use only. It may not be resold or
given away to other people. If you’d like to share it with others, the best thing to do is buy
additional copies here: https://pybit.es/tips.

We appreciate you respecting the hard and continuous effort behind this book.

For any issues or inquiries email us: support@pybit.es

Thanks to Robin Beer and Chris May for proof reading and a special thanks to our technical
reviewer Andrew Jarcho.

Cover design by @ryanurz

© PyBites 2020+ 4

Contents

Contents ___ 4

Introduction __ 5

Practical Python Tips __ 6

3. Create a dictionary using zip ___ 7

7. Enumerate __ 8

10. Is vs == (object equality) __ 9

14. Collections.Counter ___ 10

20. Zfill __ 11

31. Set operations __ 12

75. Freeze a portion of a function __ 13

229. Testing floating point numbers ___ 14

241. Create an entry point to your package ___ 15

247. Make a retry decorator (with optional argument) _____________________________________ 16

This was only 4% … __ 17

© PyBites 2020+ 5

Introduction

Tip: a small but useful piece of practical advice. - Google search

Beautiful is better than ugly. - Zen of Python

Welcome to our Python tips book. It has been a long time coming and we are so proud to finally
get it into your hands (digitally speaking).

Great developers read and write a lot of code and our tips have helped thousands of them
improve their Python.

Python is a beautiful language with a rich standard library but it’s still a huge undertaking to
become proficient with it.

It can be difficult to discover awesome features that will make you shine as a developer.

The Zen of Python says: There should be one-- and preferably only one --obvious way to do it.

This can potentially take years to figure out which is why we distilled our years of experience into
these practical snippets that will help you get there faster.

Regularly reviewing our tips is also the ideal spaced repetition that will make you a more effective
developer. It will save you lines of code, will make your code more idiomatic (“Pythonic”) and you
will impress your colleagues and tech recruiters with your increasing knowledge of the language.

A little bit of history

We started sharing tips on Twitter roughly 2 years ago and the beautiful code images (produced
with Carbon) gained traction immediately. This is what inspired us to write this book.

© PyBites 2020+ 6

Practical Python Tips

In this free ebook you will find 10 real world PyBites Python Tips. Enjoy!

© PyBites 2020+ 7

3. Create a dictionary using zip

Create a dict of two sequences using the zip built-in:

>>> names = 'bob julian tim sara'.split()

>>> ages = '11 22 33 44'.split()

>>> zip(names, ages)

<zip object at 0x7fae75920d20>

>>> list(zip(names, ages))

[('bob', '11'), ('julian', '22'), ('tim', '33'), ('sara', '44')]

>>> dict(zip(names, ages))

{'bob': '11', 'julian': '22', 'tim': '33', 'sara': '44'}

Explanation

The dict constructor can receive a list of tuples.

Here we use zip to combine names and ages. This built-in creates an iterator intertwining two or

more sequences ("iterables").

By feeding this into dict we get a dictionary back where the first elements of each tuple pair are

the keys and the second elements are the values.

It only works with 2 element tuples, giving it 3 you'd get a ValueError: dictionary update
sequence element #0 has length 3; 2 is required.

Resources

https://stackoverflow.com/a/209854

© PyBites 2020+ 8

7. Enumerate

If you need the index inside a loop in Python use enumerate:

>>> names = 'bob julian tim sara'.split()

>>> for i, name in enumerate(names, start=1):

... print(i, name)

...

1 bob

2 julian

3 tim

4 sara

Explanation

Wrapping enumerate around an iterator you get a counter for free.

By default it starts at 0, but you can change that using the optional start keyword arg.

Resources

https://docs.python.org/3/library/functions.html#enumerate

Exercise

Bite 15. Enumerate 2 sequences

© PyBites 2020+ 9

10. Is vs == (object equality)

The difference in Python between comparing objects and their values:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> c = a

>>> a == b # same content

True

>>> a == c # also same content

True

>>> a is c # same object

True

>>> a is b # not the same object

False

to check for equal objects you can check their

identity using id()

>>> id(a), id(b), id(c)

(140611808855040, 140611819909632, 140611808855040)

Explanation

In Python is checks that 2 arguments refer to the same object, == is used to check that they

have the same value.

To check whether variables refer to the same object you can use the id() built-in which, as per

the docs, returns an “identity” integer which is guaranteed to be unique and constant for the
object's lifetime.

Resources

https://stackoverflow.com/a/15008404
https://docs.python.org/3/library/functions.html#id

Exercise

Bite 80. Check equality of two lists

© PyBites 2020+ 10

14. Collections.Counter

For counting in Python look no further than collections.Counter:

>>> from collections import Counter

>>> languages = 'Python Java Perl Python JS C++ JS Python'.split()

>>> Counter(languages)

Counter({'Python': 3, 'JS': 2, 'Java': 1, 'Perl': 1, 'C++': 1})

>>> Counter(languages).most_common(2)

[('Python', 3), ('JS', 2)]

Explanation

It does not get more Pythonic than this ;)

Counter() can receive an iterable, a mapping or keyword args (nice!)

most_common is useful to get, well, the most common elements.

Resources

https://docs.python.org/3.9/library/collections.html#collections.Counter

Exercise

Bite 18. Find the most common word

© PyBites 2020+ 11

20. Zfill

Give a number leading zeros in Python using zfill:

>>> for i in range(1, 6):

... str(i).zfill(3)

...

'001'

'002'

'003'

'004'

'005'

>>> for i in range(1, 6):

... str(i).zfill(5)

...

'00001'

'00002'

'00003'

'00004'

'00005'

>>> for i in range(-3, 2):

... str(i).zfill(3)

...

'-03'

'-02'

'-01'

'000'

'001'

Explanation

This is a great technique to print titles in your app, e.g. "Bite 02"

Resources

https://docs.python.org/3/library/stdtypes.html?highlight=zfill#str.zfill

© PyBites 2020+ 12

31. Set operations

You want to compare 2 sequences in Python? Enter set operations:

>>> a = {1, 2, 3, 4, 5} # or use set() on a list

>>> b = {1, 2, 3, 6, 7, 8}

unique to a

>>> a - b

{4, 5}

unique to b

>>> b - a

{8, 6, 7}

in both sets

>>> a & b

{1, 2, 3}

in either one or the other

>>> a ^ b

{4, 5, 6, 7, 8}

no need for more verbose (and probably slower) looping

>>> line1 = ['You', 'can', 'do', 'anything', 'but', 'not', 'everything']

>>> line2 = ['We', 'are', 'what', 'we', 'repeatedly', 'do']

>>> for word in line1:

... if word in line2: print(word)

...

do

>>> set(line1) & set(line2)

{'do'}

Explanation

set operations are a very powerful feature. As you can see in the code example they can save

you a lot of code / looping.

You want to have this trick up your sleeve, so practice the linked exercise below!

Resources

https://docs.python.org/3.8/library/stdtypes.html#set-types-set-frozenset

Exercise

Bite 78. Find programmers with common languages

© PyBites 2020+ 13

75. Freeze a portion of a function

Python's functools.partial lets you put a basic wrapper around an existing function:

>>> from functools import partial

>>> print_no_newline = partial(print, end=', ')

>>> for _ in range(3): print('test')

...

test

test

test

>>> for _ in range(3): print_no_newline('test')

...

test, test, test, >>>

Explanation

Python's functools.partial lets you put a basic wrapper around an existing function so that

you can set a default value where there normally wouldn't be one.

Here we make our own print defaulting the end keyword to a comma (overwriting print's

default of adding a newline (\n) to the end).

So this is a nice way to make a "shortcut" if you always call a function with the same arguments.

Resources

https://docs.python.org/3/library/functools.html#functools.partial

Exercise

Bite 172. Having fun with Python Partials

© PyBites 2020+ 14

229. Testing floating point numbers

Sometimes you need a bit of tolerance in your tests, for example when dealing with floats:

$ more script.py

def sum_numbers(*numbers):

 return sum(numbers)

$ more test.py

from script import sum_numbers

def test_sum_numbers_ints():

 assert sum_numbers(1, 2, 3) == 6

def test_sum_numbers_floats():

 assert sum_numbers(0.1, 0.2) == 0.3 # uh-oh

$ pytest test.py

...

E assert 0.30000000000000004 == 0.3

E + where 0.30000000000000004 = sum_numbers(0.1, 0.2)

...

1 failed, 1 passed in 0.06s

$ more test.py

from pytest import approx

...

def test_sum_numbers_floats():

 assert sum_numbers(0.1, 0.2) == approx(0.3) # this passes

Explanation

pytest's approx asserts that two numbers (or two sets of numbers) are equal to each other

within some tolerance. Here we see a good example of float's inherent imprecision and the

trouble it may cause in testing. But no worries, approx asserts

that 0.30000000000000004 equals 0.3.

Resources

https://docs.pytest.org/en/latest/reference.html#pytest-approx
https://cs50.stackexchange.com/a/15645

© PyBites 2020+ 15

241. Create an entry point to your package

Adding a __main__.py file to your package you can call it with python -m:

given this simple package:

$ cat my_package/file_1.py

def add_two_numbers(a, b):

 return a + b

we cannot run it as a package:

$ python -m my_package

... No module named my_package.__main__; 'my_package' is a package and cannot
be directly executed

adding a __main__.py you can add an entry point to your package:

$ cat my_package/__main__.py

from . import file_1

def foo():

 print(file_1.add_two_numbers(3, 4))

if __name__ == '__main__':

 foo()

now you can run the package like this:

$ python -m my_package

7

Explanation

Similarly to the if __name__ == "__main__": entry point for a script (see Tip #46), you can

create an entry point to your package by adding a __main__.py module to it, making it callable

using: python -m my_package.

Another way is to add the entry_points keyword argument

to setuptools.setup() in setup.py (or [tool.poetry.scripts] in pyproject.toml if you

use poetry).

Explanation

https://docs.python.org/3/using/cmdline.html#cmdoption-m
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html

© PyBites 2020+ 16

247. Make a retry decorator (with optional argument)

Here we make a retry decorator that tries to call a function N times before giving up:

>>> from functools import wraps, partial

>>> import requests

>>> def retry(func=None, *, times=3):

... if func is None:

... return partial(retry, times=times)

... @wraps(func)

... def wrapper(*args, **kwargs):

... attempt = 0

... while attempt < times:

... try:

... return func(*args, **kwargs)

... except Exception as exc:

... attempt += 1

... print(f"Exception {func}: {exc} (attempt: {attempt})")

... return func(*args, **kwargs)

... return wrapper

>>> @retry # or: @retry(times=<int>)

... def get(url):

... resp = requests.get(url)

... resp.raise_for_status()

>>> get('https://httpbin.org/status/200')

>>> get('https://httpbin.org/status/404')

Exception <function get at 0x7fb4592dc280>: 404 Client Error: NOT FOUND ...

Exception <function get at 0x7fb4592dc280>: 404 Client Error: NOT FOUND ...

Exception <function get at 0x7fb4592dc280>: 404 Client Error: NOT FOUND ...

...

requests.exceptions.HTTPError: 404 Client Error: NOT FOUND ...

Explanation

Here we try to call an endpoint using the requests module (Tip #39). If it raises an exception

(using raise_for_status(), see Tip #236), it tries again, up till times attempts. We

use partial (Tip #75) to have the decorator accept an optional argument. This is quite mind-

blowing code which took us various attempts. Luckily we stumbled upon this recipe in Python
Cookbook 3rd ed (see all attempts in the article below).

Resources

https://pybit.es/decorator-optional-argument.html

© PyBites 2020+ 17

This was only 4% …

We hope you enjoyed these 10 free tips.

To get the other 240 real world Python tips, buy our book using the link in the post
you got this sample ebook from ...

Thanks,
Bob & Julian

	Contents
	Introduction
	Practical Python Tips
	3. Create a dictionary using zip
	Explanation
	Resources

	7. Enumerate
	Explanation
	Resources
	Exercise

	10. Is vs == (object equality)
	Explanation
	Resources
	Exercise

	14. Collections.Counter
	Explanation
	Resources
	Exercise

	20. Zfill
	Explanation
	Resources

	31. Set operations
	Explanation
	Resources
	Exercise

	75. Freeze a portion of a function
	Explanation
	Resources
	Exercise

	229. Testing floating point numbers
	Explanation
	Resources

	241. Create an entry point to your package
	Explanation
	Explanation

	247. Make a retry decorator (with optional argument)
	Explanation
	Resources

	This was only 4% …

