Advanced Analytics

 and GraphicsلARED P. LANDER

FREE SAMPLE CHAPTER
 f
 \square 8^{+}
 in
 \because

SHARE WITH OTHERS

R for

Everyone

The Addison-Wesley Data and Analytics Series

Addison-Wesley

Visit informit.com/awdataseries for a complete list of available publications.

The Addison-Wesley Data and Analytics Series provides readers with practical knowledge for solving problems and answering questions with data. Titles in this series primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data
2. Algorithms: how to mine intelligence or make predictions based on data
3. Visualizations: how to represent data and insights in a meaningful and compelling way

The series aims to tie all three of these areas together to help the reader build end-to-end systems for fighting spam; making recommendations; building personalization; detecting trends, patterns, or problems; and gaining insight from the data exhaust of systems and user interactions.

Make sure to connect with us! informit.com/socialconnect
$\stackrel{\rightharpoonup}{*}$ Addison-Wesley
Safari'

R for

Everyone

Advanced Analytics and Graphics

Jared P. Lander

- Addison-Wesley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.
Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Lander, Jared P.
R for everyone / Jared P. Lander.
pages cm
Includes bibliographical references.
ISBN-13: 978-0-321-88803-7 (alk. paper)
ISBN-10: 0-321-88803-0 (alk. paper)

1. R (Computer program language) 2. Scripting languages (Computer science) 3. Statistics—Data processing. 4. Statistics-Graphic methods—Data processing. 5. Computer simulation. I. Title.
QA76.73.R3L36 2014
005.13-dc23

Copyright © 2014 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88803-7
ISBN-10: 0-321-88803-0
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2013

*
 To my mother and father *

This page intentionally left blank

Contents

Foreword xiii
Preface xv
Acknowledgments xix
About the Author xxiii
1 Getting R 1
1.1 Downloading R 1
1.2 R Version 2
$1.3 \quad 32$-bit versus 64 -bit 2
1.4 Installing 2
1.5 Revolution R Community Edition 10
1.6 Conclusion 11
2 The R Environment 13
2.1 Command Line Interface 14
2.2 RStudio 15
2.3 Revolution Analytics RPE 26
2.4 Conclusion 27
3 R Packages 29
3.1 Installing Packages 29
3.2 Loading Packages 32
3.3 Building a Package 33
3.4 Conclusion 33
4 Basics of R 35
4.1 Basic Math 35
4.2 Variables 36
4.3 Data Types 38
4.4 Vectors 43
4.5 Calling Functions 49
4.6 Function Documentation 49
4.7 Missing Data 50
4.8 Conclusion 51
5 Advanced Data Structures 53
5.1 data.frames 53
5.2 Lists 61
5.3 Matrices 68
5.4 Arrays 71
5.5 Conclusion 72
6 Reading Data into R 73
6.1 Reading CSVs 73
6.2 Excel Data 74
6.3 Reading from Databases 75
6.4 Data from Other Statistical Tools 77
6.5 R Binary Files 77
6.6 Data Included with R 79
6.7 Extract Data from Web Sites 80
6.8 Conclusion 81
7 Statistical Graphics 83
7.1 Base Graphics 83
7.2 ggplot2 86
7.3 Conclusion 98
8 Writing R Functions 99
8.1 Hello, World! 99
8.2 Function Arguments 100
8.3 Return Values 103
8.4 do.call 104
8.5 Conclusion 104
9 Control Statements 105
9.1 if and else 105
9.2 switch 108
9.3 ifelse 109
9.4 Compound Tests 111
9.5 Conclusion 112
10 Loops, the Un-R Way to Iterate 113
10.1 for Loops 113
10.2 while Loops 115
10.3 Controlling Loops 115
10.4 Conclusion 116
11 Group Manipulation 117
11.1 Apply Family 117
11.2 aggregate 120
11.3 plyr 124
11.4 data.table 129
11.5 Conclusion 139
12 Data Reshaping 141
12.1 cbind and rbind 141
12.2 Joins 142
12.3 reshape2 149
12.4 Conclusion 153
13 Manipulating Strings 155
13.1 paste 155
13.2 sprintf 156
13.3 Extracting Text 157
13.4 Regular Expressions 161
13.5 Conclusion 169
14 Probability Distributions 171
14.1 Normal Distribution 171
14.2 Binomial Distribution 176
14.3 Poisson Distribution 182
14.4 Other Distributions 185
14.5 Conclusion 186
15 Basic Statistics 187
15.1 Summary Statistics 187
15.2 Correlation and Covariance 191
15.3 T-Tests 200
15.4 ANOVA 207
15.5 Conclusion 210
16 Linear Models 211
16.1 Simple Linear Regression 211
16.2 Multiple Regression 216
16.3 Conclusion 232
17 Generalized Linear Models 233
17.1 Logistic Regression 233
17.2 Poisson Regression 237
17.3 Other Generalized Linear Models 240
17.4 Survival Analysis 240
17.5 Conclusion 245
18 Model Diagnostics 247
18.1 Residuals 247
18.2 Comparing Models 253
18.3 Cross-Validation 257
18.4 Bootstrap 262
18.5 Stepwise Variable Selection 265
18.6 Conclusion 269
19 Regularization and Shrinkage 271
19.1 Elastic Net 271
19.2 Bayesian Shrinkage 290
19.3 Conclusion 295
20 Nonlinear Models 297
20.1 Nonlinear Least Squares 297
20.2 Splines 300
20.3 Generalized Additive Models 304
20.4 Decision Trees 310
20.5 Random Forests 312
20.6 Conclusion 313
21 Time Series and Autocorrelation 315
21.1 Autoregressive Moving Average 315
21.2 VAR 322
21.3 GARCH 327
21.4 Conclusion 336
22 Clustering 337
22.1 K-means 337
22.2 PAM 345
22.3 Hierarchical Clustering 352
22.4 Conclusion 357
23 Reproducibility, Reports and Slide Shows with knitr 359
23.1 Installing a LTEX Program 359
 360
23.3 Using knitr with $\mathrm{UT}_{\mathrm{E}} \mathrm{X}$ 362
23.4 Markdown Tips 367
23.5 Using knitr and Markdown 368
23.6 pandoc 369
23.7 Conclusion 371
24 Building R Packages 373
24.1 Folder Structure 373
24.2 Package Files 373
24.3 Package Documentation 380
24.4 Checking, Building and Installing 383
24.5 Submitting to CRAN 384
24.6 C++ Code 384
24.7 Conclusion 390
A Real-Life Resources 391
A. 1 Meetups 391
A. 2 Stackoverflow 392
A. 3 Twitter 393
A. 4 Conferences 393
A. 5 Web Sites 393
A. 6 Documents 394
A. 7 Books 394
A. 8 Conclusion 394
B Glossary 395
List of Figures 409
List of Tables 417
General Index 419
Index of Functions 427
Index of Packages 431
Index of People 433
Data Index 435

Foreword

Rhas had tremendous growth in popularity over the last three years. Based on that, you'd think that it was a new, up-and-coming language. But surprisingly, R has been around since 1993. Why the sudden uptick in popularity? The somewhat obvious answer seems to be the emergence of data science as a career and a field of study. But the underpinnings of data science have been around for many decades. Statistics, linear algebra, operations research, artificial intelligence, and machine learning all contribute parts to the tools that a modern data scientist uses. R, more than most languages, has been built to make most of these tools only a single function call away.

That's why I'm very excited to have this book as one of the first in the Addison-Wesley Data and Analytics Series. R is indispensable for many data science tasks. Many algorithms useful for prediction and analysis can be accessed through only a few lines of code, which makes it a great fit for solving modern data challenges. Data science as a field isn't just about math and statistics, and it isn't just about programming and infrastructure. This book provides a well-balanced introduction to the power and expressiveness of R and is aimed at a general audience.

I can't think of a better author to provide an introduction to R than Jared Lander. Jared and I first met through the New York City machine learning community in late 2009. Back then, the New York City data community was small enough to fit in a single conference room, and many of the other data meetups had yet to be formed. Over the last four years, Jared has been at the forefront of the emerging data science profession.

Through running the Open Statistical Programming Meetup, speaking at events, and teaching a course at Columbia on R, Jared has helped grow the community by educating programmers, data scientists, journalists, and statisticians alike. But Jared's expertise isn't limited to teaching. As an everyday practitioner, he puts these tools to use while consulting for clients big and small.

This book provides an introduction both to programming in R and to the various statistical methods and tools an everyday R programmer uses. Examples use publicly available datasets that Jared has helpfully cleaned and made accessible through his Web site. By using real data and setting up interesting problems, this book stays engaging to the end.
—Paul Dix, Series Editor

This page intentionally left blank

Preface

With the increasing prevalence of data in our daily lives, new and better tools are needed to analyze the deluge. Traditionally there have been two ends of the spectrum: lightweight, individual analysis using tools like Excel or SPSS and heavy duty, high-performance analysis built with $\mathrm{C}++$ and the like. With the increasing strength of personal computers grew a middle ground that was both interactive and robust. Analysis done by an individual on his or her own computer in an exploratory fashion could quickly be transformed into something destined for a server, underpinning advanced business processes. This area is the domain of R, Python, and other scripted languages.

R, invented by Robert Gentleman and Ross Ihaka of the University of Auckland in 1993, grew out of S, which was invented by John Chambers at Bell Labs. It is a high-level language that was originally intended to be run interactively where the user runs a command, gets a result, and then runs another command. It has since evolved into a language that can also be embedded in systems and tackle complex problems.

In addition to transforming and analyzing data, R can produce amazing graphics and reports with ease. It is now being used as a full stack for data analysis, extracting and transforming data, fitting models, drawing inferences and making predictions, plotting and reporting results.

R's popularity has skyrocketed since the late 2000s, as it has stepped out of academia and into banking, marketing, pharmaceuticals, politics, genomics and many other fields. Its new users are often shifting from low-level, compiled languages like $\mathrm{C}++$, other statistical packages such as SAS or SPSS, and from the 800-pound gorilla, Excel. This time period also saw a rapid surge in the number of add-on packages-libraries of prewritten code that extend R's functionality.

While R can sometimes be intimidating to beginners, especially for those without programming experience, I find that programming analysis, instead of pointing and clicking, soon becomes much easier, more convenient and more reliable. It is my goal to make that learning process easier and quicker.

This book lays out information in a way I wish I were taught when learning R in graduate school. Coming full circle, the content of this book was developed in conjuction with the data science course I teach at Columbia University. It is not meant to cover every minute detail of R, but rather the 20% of functionality needed to accomplish 80% of the work. The content is organized into self-contained chapters as follows.

Chapter 1, Getting R: Where to download R and how to install it. This deals with the varying operating systems and 32 -bit versus 64 -bit versions. It also gives advice on where to install R.

Chapter 2, The R Environment: An overview of using R, particularly from within RStudio. RStudio projects and Git integration are covered as is customizing and navigating RStudio.

Chapter 3, Packages: How to locate, install and load R packages.
Chapter 4, Basics of R: Using R for math. Variable types such as numeric, character and Date are detailed as are vectors. There is a brief introduction to calling functions and finding documentation on functions.

Chapter 5, Advanced Data Structures: The most powerful and commonly used data structure, data.frames, along with matrices and lists, are introduced.

Chapter 6, Reading Data into R: Before data can be analyzed it must be read into R. There are numerous ways to ingest data, including reading from CSVs and databases.

Chapter 7, Statistical Graphics: Graphics are a crucial part of preliminary data analysis and communicating results. R can make beautiful plots using its powerful plotting utilities. Base graphics and ggplot2 are introduced and detailed here.

Chapter 8, Writing R Functions: Repeatable analysis is often made easier with user-defined functions. The structure, arguments and return rules are discussed.

Chapter 9, Control Statements: Controlling the flow of programs using if, ifelse and complex checks.

Chapter 10, Loops, the Un-R Way to Iterate: Iterating using for and while loops. While these are generally discouraged they are important to know.

Chapter 11, Group Manipulation: A better alternative to loops, vectorization does not quite iterate through data so much as operate on all elements at once. This is more efficient and is primarily performed with the apply functions and plyr package.

Chapter 12, Data Reshaping: Combining multiple datasets, whether by stacking or joining, is commonly necessary as is changing the shape of data. The plyr and reshape2 packages offer good functions for accomplishing this in addition to base tools such as rbind, cbind and merge.

Chapter 13, Manipulating Strings: Most people do not associate character data with statistics but it is an important form of data. R provides numerous facilities for working with strings, including combining them and extracting information from within. Regular expressions are also detailed.

Chapter 14, Probability Distributions: A thorough look at the normal, binomial and Poisson distributions. The formulas and functions for many distributions are noted.

Chapter 15, Basic Statistics: These are the first statistics most people are taught, such as mean, standard deviation and t -tests.

Chapter 16, Linear Models: The most powerful and common tool in statistics, linear models are extensively detailed.

Chapter 17, Generalized Linear Models: Linear models are extended to include logistic and Poisson regression. Survival analysis is also covered.

Chapter 18, Model Diagnostics: Determining the quality of models and variable selection using residuals, AIC, cross-validation, the bootstrap and stepwise variable selection.

Chapter 19, Regularization and Shrinkage: Preventing overfitting using the Elastic Net and Bayesian methods.

Chapter 20, Nonlinear Models: When linear models are inappropriate, nonlinear models are a good solution. Nonlinear least squares, splines, generalized additive models, decision trees and random forests are discussed.

Chapter 21, Time Series and Autocorrelation: Methods for the analysis of univariate and multivariate time series data.

Chapter 22, Clustering: Clustering, the grouping of data, is accomplished by various methods such as K -means and hierarchical clustering.

Chapter 23, Reproducibility, Reports and Slide Shows with knitr: Generating reports, slide shows and Web pages from within R is made easy with knitr, ${ }_{A T E X}$ and Markdown.

Chapter 24, Building R Packages: R packages are great for portable, reusable code. Building these packages has been made incredibly easy with the advent of devtools and Rcpp.

Appendix A, Real-Life Resources: A listing of our favorite resources for learning more about R and interacting with the community.

Appendix B, Glossary: A glossary of terms used throughout this book.
A good deal of the text in this book is either R code or the results of running code. Code and results are most often in a separate block of text and set in a distinctive font, as shown in the following example. The different parts of code also have different colors. Lines of code start with $>$, and if code is continued from one line to another the continued line begins with + .

```
> # this is a comment
>
> # now basic math
> 10 * 10
```

[1] 100
$>$
> \# calling a function
> sqrt(4)
[1] 2
Certain Kindle devices do not display color so the digital edition of this book will be viewed in greyscale on those devices.

There are occasions where code is shown inline and looks like sqrt (4).
In the few places where math is necessary, the equations are indented from the margin and are numbered.

$$
\begin{equation*}
e^{i \pi}+1=0 \tag{1}
\end{equation*}
$$

Within equations, normal variables appear as italic text (x), vectors are bold lowercase letters (\mathbf{x}) and matrices are bold uppercase letters (X). Greek letters, such as α and β, follow the same convention.

Function names will be written as join and package names as plyr. Objects generated in code that are referenced in text are written as object1.

Learning R is a gratifying experience that makes life so much easier for so many tasks. I hope you enjoy learning with me.

Acknowledgments

T.o start, I must thank my mother, Gail Lander, for encouraging me to become a math major. Without that I would never have followed the path that led me to statistics and data science. In a similar vein, I have to thank my father, Howard Lander, for paying all those tuition bills. He has been a valuable source of advice and guidance throughout my life and someone I have aspired to emulate in many ways. While they both insist they do not understand what I do, they love that I do it and have helped me all along the way. Staying with family, I should thank my sister and brother-in-law, Aimee and Eric Schechterman, for letting me teach math to Noah, their five-year-old son.

There are many teachers who have helped shape me over the years. The first is Rochelle Lecke, who tutored me in middle school math even when my teacher told me I did not have worthwhile math skills.

Then there is Beth Edmondson, my precalc teacher at Princeton Day School. After I wasted the first half of high school as a mediocre student, she told me I had "some nerve signing up for next year's AP Calc" given my grades. She agreed to let me take AP Calc if I went from a C to an A+ in her class, never thinking I stood a chance. Three months later, she was in shock as I not only earned the A+, but turned around my entire academic career. She changed my life and without her, I do not know where I would be today. I am forever grateful that she was my teacher.

For the first two years at Muhlenberg College, I was determined to be a business and communications major, but took math classes because they came naturally to me. My professors, Dr. Penny Dunham, Dr. Bill Dunham, and Dr. Linda McGuire, all convinced me to become a math major, a decision that has greatly shaped my life. Dr. Greg Cicconetti gave me my first glimpse of rigorous statistics, my first research opportunity and planted the idea in my head that I should go to grad school for statistics.

While earning my M.A. at Columbia University, I was surrounded by brilliant minds in statistics and programming. Dr. David Madigan opened my eyes to modern machine learning, and Dr. Bodhi Sen got me thinking about statistical programming. I had the privilege to do research with Dr. Andrew Gelman, whose insights have been immeasurably important to me. Dr. Richard Garfield showed me how to use statistics to help people in disaster and war zones when he sent me on my first assignment to Myanmar. His advice and friendship over the years have been dear to me. Dr. Jingchen Liu
allowed and encouraged me to write my thesis on New York City pizza, which has brought me an inordinate amount of attention. ${ }^{1}$

While at Columbia, I also met my good friend-and one time TA- Dr. Ivor Cribben who filled in so many gaps in my knowledge. Through him, I met Dr. Rachel Schutt, a source of great advice, and who I am now honored to teach alongside at Columbia.

Grad school might never have happened without the encouragement and support of Shanna Lee. She helped maintain my sanity while I was incredibly overcommited to two jobs, classes and Columbia's hockey team. I am not sure I would have made it through without her.

Steve Czetty gave me my first job in analytics at Sky IT Group and taught me about databases, while letting me experiment with off-the-wall programming. This sparked my interest in statistics and data. Joe DeSiena, Philip du Plessis, and Ed Bobrin at the Bardess Group are some of the finest people I have ever had the pleasure to work with, and I am proud to be working with them to this day. Mike Minelli, Rich Kittler, Mark Barry, David Smith, Joseph Rickert, Dr. Norman Nie, James Peruvankal, Neera Talbert and Dave Rich at Revolution Analytics let me do one of the best jobs I could possibly imagine: explaining to people in business why they should be using R. Kirk Mettler, Richard Schultz, Dr. Bryan Lewis and Jim Winfield at Big Computing encouraged me to have fun, tackling interesting problems in R. Vincent Saulys, John Weir, and Dr. Saar Golde at Goldman Sachs made my time there both enjoyable and educational.

Throughout the course of writing this book, many people helped me with the process. First and foremost is Yin Cheung, who saw all the stress I constantly felt and supported me through many ruined nights and days.

My editor, Debra Williams, knew just how to encourage me and her guiding hand has been invaluable. Paul Dix, the series editor and a good friend, was the person who suggested I write this book, so none of this would have happened without him. Thanks to Caroline Senay and Andrea Fox for being great copy editors. Without them, this book would not be nearly as well put together. Robert Mauriello's technical review was incredibly useful in honing the book's presentation.

The folks at RStudio, particularly JJ Allaire and Josh Paulson, make an amazing product, which made the writing process far easier than it would have been otherwise. Yihui Xie, the author of the knitr package, provided numerous feature changes that I needed to write this book. His software, and his speed at implementing my requests, is greatly appreciated.

Numerous people have provided valuable feedback as I produced this book, including Chris Bethel, Dr. Dirk Eddelbuettel, Dr. Ramnath Vaidyanathan, Dr. Eran Bellin,

[^0]statistician-uses-statistics-to-find-nyc-best-pizza.html

Avi Fisher, Brian Ezra, Paul Puglia, Nicholas Galasinao, Aaron Schumaker, Adam Hogan, Jeffrey Arnold, and John Houston.

Last fall was my first time teaching, and I am thankful to the students from the Fall 2012 Introduction to Data Science class at Columbia University for being the guinea pigs for the material that ultimately ended up in this book.

Thank you to everyone who helped along the way.

This page intentionally left blank

About the Author

Jared P. Lander is the founder and CEO of Lander Analytics, a statistical consulting firm based in New York City, the organizer of the New York Open Statistical Programming Meetup, and an adjunct professor of statistics at Columbia University. He is also a tour guide for Scott's Pizza Tours and an advisor to Brewla Bars, a gourmet ice pop start-up. With an M.A. from Columbia University in statistics and a B.A. from Muhlenberg College in mathematics, he has experience in both academic research and industry. His work for both large and small organizations spans politics, tech start-ups, fund-raising, music, finance, healthcare and humanitarian relief efforts.

He specializes in data management, multilevel models, machine learning, generalized linear models, visualization, data management and statistical computing.

This page intentionally left blank

This page intentionally left blank

Chapter 12

Data Reshaping

A
s noted in Chapter 11, manipulating the data takes a great deal of effort before serious analysis can begin. In this chapter we will consider when the data needs to be rearranged from column oriented to row oriented (or the opposite) and when the data are in multiple, separate sets and need to be combined into one.

There are base functions to accomplish these tasks but we will focus on those in plyr, reshape2 and data.table.

12.1 cbind and rbind

The simplest case is when we have two datasets with either identical columns (both the number of and names) or the same number of rows. In this case, either rbind or cbind work great.

As a first trivial example, we create two simple data.frames by combining a few vectors with cbind, and then stack them using rbind.

```
> # make two vectors and combine them as columns in a data.frame
> sport <- c("Hockey", "Baseball", "Football")
> league <- c("NHL", "MLB", "NFL")
> trophy <- c("Stanley Cup", "Commissioner's Trophy",
+ "Vince Lombardi Trophy")
> trophies1 <- cbind(sport, league, trophy)
> # make another data.frame using data.frame()
> trophies2 <- data.frame(sport=c("Basketball", "Golf"),
+ league=c("NBA", "PGA"),
+ trophy=c("Larry O'Brien Championship Trophy",
+ "Wanamaker Trophy"),
+ stringsAsFactors=FALSE)
> # combine them into one data.frame with rbind
> trophies <- rbind(trophies1, trophies2)
```

Both cbind and rbind can take multiple arguments to combine an arbitrary number of objects. Note that it is possible to assign new column names to vectors in cbind.

```
> cbind(Sport = sport, Association = league, Prize = trophy)
    Sport Association Prize
[1,] "Hockey" "NHL" "Stanley Cup"
[2,] "Baseball" "MLB" "Commissioner's Trophy"
[3,] "Football" "NFL" "Vince Lombardi Trophy"
```


12.2 Joins

Data do not always come so nicely aligned for combining using cbind, so they need to be joined together using a common key. This concept should be familiar to SQL users. Joins in R are not as flexible as SQL joins, but are still an essential operation in the data analysis process.

The three most commonly used functions for joins are merge in base R, join in plyr and the merging functionality in data.table. Each has pros and cons with some pros outweighing their respective cons.

To illustrate these functions I have prepared data originally made available as part of the USAID Open Government initiative. ${ }^{1}$ The data have been chopped into eight separate files so that they can be joined together. They are all available in a zip file at http://jaredlander.com/data/US_Foreign_Aid.zip. These should be downloaded and unzipped to a folder on our computer. This can be done a number of ways (including using a mouse!) but we show how to download and unzip using R.

```
> download.file(url="http://jaredlander.com/data/US_Foreign_Aid.zip",
+ destfile="data/ForeignAid.zip")
> unzip("data/ForeignAid.zip", exdir="data")
```

To load all of these files programmatically, we use a for loop as seen in Section 10.1. We get a list of the files using dir, and then loop through that list assigning each dataset to a name specified using assign.

```
> require(stringr)
> # first get a list of the files
> theFiles <- dir("data/", pattern="\\.csv")
> ## loop through those files
> for(a in theFiles)
+ {
+ # build a good name to assign to the data
+ nameToUse <- str_sub(string=a, start=12, end=18)
```

```
+ # read in the csv using read.table
+ # file.path is a convenient way to specify a folder and file name
+ temp <- read.table(file=file.path("data", a),
+ header=TRUE, sep=",", stringsAsFactors=FALSE)
+ # assign them into the workspace
+ assign(x=nameToUse, value=temp)
}
```


12.2.1 merge

R comes with a built-in function, called merge, to merge two data.frames.

```
> Aid90s00s <- merge(x=Aid_90s, y=Aid_00s,
+ by.x=c("Country.Name", "Program.Name"),
+ by.y=c("Country.Name", "Program.Name"))
head(Aid90s00s)
```

 Country.Name Program.Name
 1 Afghanistan Child Survival and Health
2 Afghanistan Department of Defense Security Assistance
Afghanistan Development Assistance
4 Afghanistan Economic Support Fund/Security Support Assistance
5 Afghanistan Food For Education
6 Afghanistan Global Health and Child Survival
FY1990 FY1991 FY1992 FY1993 FY1994 FY1995 FY1996 FY1997 FY1998

	FY2006	FY2007	FY2008	FY2009
1	40856382	72527069	28397435	NA
2	230501318	214505892	495539084	552524990
3	212648440	173134034	150529862	3675202
4	1357750249	1266653993	1400237791	1418688520
5	386891	NA	NA	NA
6	NA	NA	63064912	1764252

The by. x specifies the key column(s) in the left data.frame and by. y does the same for the right data.frame. The ability to specify different column names for each data.frame is the most useful feature of merge. The biggest drawback, however, is that merge can be much slower than the alternatives.

12.2.2 plyr join

Returning to Hadley Wickham's plyr package, we see it includes a join function, which works similarly to merge but is much faster. The biggest drawback, though, is that the key column(s) in each table must have the same name. We use the same data used previously to illustrate.

```
> require(plyr)
> Aid90s00sJoin <- join(x = Aid_90s, y = Aid_00s, by = c("Country.Name",
+ "Program.Name"))
> head(Aid90s00sJoin)
```

 Country.Name Program.Name
 Afghanistan Child Survival and Health
 Afghanistan Department of Defense Security Assistance
 Afghanistan Development Assistance
 Afghanistan Economic Support Fund/Security Support Assistance
 Afghanistan Food For Education
 6 Afghanistan Global Health and Child Survival

FY1999 FY2000 FY2001 FY2002 FY2003 FY2004 FY2005
1 NA NA NA 2586555 56501189 4021530439817970
2 NA NA NA 2964313 NA 45635526151334908
$3 \quad$ NA NA $4110478 \quad 8762080 \quad 54538965 \quad 180539337193598227$
$4 \quad N A \quad N A \quad 61144 \quad 31827014 \quad 34130682210255220371157530168$

5	NA	NA	NA	NA	3957312	2610006
6	NA	NA	NA	NA	NA	NA

	FY2006	FY2007	FY2008	FY2009
1	40856382	72527069	28397435	NA
2	230501318	214505892	495539084	552524990
3	212648440	173134034	150529862	3675202
4	1357750249	1266653993	1400237791	1418688520
5	386891	NA	NA	NA
6	NA	NA	63064912	1764252

join has an argument for specifying a left, right, inner or full (outer) join.

We have eight data.frames containing foreign assistance data that we would like to combine into one data.frame without hand coding each join. The best way to do this is to put all the data.frames into a list, and then successively join them together using Reduce.

```
> # first figure out the names of the data.frames
> frameNames <- str_sub(string = theFiles, start = 12, end = 18)
> # build an empty list
> frameList <- vector("list", length(frameNames))
> names(frameList) <- frameNames
> # add each data.frame into the list
> for (a in frameNames)
+ {
+ frameList[[a]] <- eval(parse(text = a))
+ }
```

A lot happened in that section of code, so let's go over it carefully. First we reconstructed the names of the data.frames using str_sub from Hadley Wickham's stringr package, which is shown in more detail in Chapter 13. Then we built an empty list with as many elements as there are data.frames, in this case eight, using vector and assigning its mode to "list." We then set appropriate names to the list.

Now that the list is built and named, we loop through it, assigning to each element the appropriate data.frame. The problem is that we have the names of the data.frames as characters but the <- operator requires a variable, not a character. So we parse and evaluate the character, which realizes the actual variable. Inspecting, we see that the list does indeed contain the appropriate data.frames.

```
> head(frameList[[1]])
```


Having all the data.frames in a list allows us to iterate through the list, joining all the elements together (or applying any function to the elements iteratively). Rather than using a loop, we use the Reduce function to speed up the operation.

```
> allAid <- Reduce(function(...)
+ {
+ join(..., by = c("Country.Name", "Program.Name"))
+ }, frameList)
> dim(allAid)
```

[1] 245367

```
> require(useful)
> corner(allAid, c = 15)
```

Country.Name	Program.Name
1	Afghanistan
2	Afghanistan
3	Afghanistan

4 Afghanistan Economic Support Fund/Security Support Assistance
5 Afghanistan Food For Education

	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	FY2006
1	NA	NA	2586555	56501189	40215304	39817970	40856382
2	NA	NA	2964313	NA	45635526	151334908	230501318
3	NA	4110478	8762080	54538965	180539337	193598227	212648440
4	NA	61144	31827014	341306822	1025522037	1157530168	1357750249
5	NA	NA	NA	3957312	2610006	3254408	386891
	FY2007	FY2008	FY2009	FY2010	FY1946 FY1947		

1	72527069	28397435	$N A$	NA	NA	NA
2	214505892	495539084	552524990	316514796	NA	NA
3	173134034	150529862	3675202	NA	NA	NA
4	1266653993	1400237791	1418688520	2797488331	NA	NA
5	NA	NA	NA	NA	NA	NA

> bottomleft(allAid, c = 15)

	Country. Name	Program. Name	FY2000	FY2001	FY2002		
2449	Zimbabwe Other	State Assistance	1341952	322842	NA		
2450	Zimbabwe Other	USAID Assistance	3033599	8464897	6624408		
2451	Zimbabwe		Peace Corps	2140530	1150732	407834	
2452	Zimbabwe		Title I	NA	NA	NA	
2453	Zimbabwe		Title II	NA	NA	31019776	
	FY2003	FY2004	FY2005	FY2006	FY2007	FY2008	FY2009
2449	NA	318655	44553	883546	1164632	2455592	2193057
2450	11580999	12805688	10091759	4567577	10627613	11466426	41940500
2451	NA						
2452	NA						
2453	NA	NA	NA	277468	100053600	180000717	174572685

FY2010 FY1946 FY1947

2449	1605765	NA	NA
2450	30011970	NA	NA
2451	NA	NA	NA
2452	NA	NA	NA
2453	79545100	NA	NA

Reduce can be a difficult function to grasp, so we illustrate it with a simple example. Let's say we have a vector of the first ten integers, $1: 10$, and want to sum them (forget for a moment that sum (1:10) will work perfectly). We can call Reduce (sum, 1:10),
which will first add 1 and 2 . It will then add 3 to that result, then 4 to that result, and so on, resulting in 55.

Likewise, we passed a list to a function that joins its inputs, which in this case was simply meaning that anything could be passed. Using ... is an advanced trick of R programming that can be difficult to get right. Reduce passed the first two data.frames in the list, which were then joined. That result was then joined to the next data.frame and so on until they were all joined together.

12.2.3 data.table merge

Like many other operations in data.table, joining data requires a different syntax, and possibly a different way of thinking. To start, we convert two of our foreign aid datasets' data.frames into data.tables.

```
> require(data.table)
> dt90 <- data.table(Aid_90s, key = c("Country.Name", "Program.Name"))
> dt00 <- data.table(Aid_00s, key = c("Country.Name", "Program.Name"))
```

Then, doing the join is a simple operation. Note that the join requires specifying the keys for the data.tables, which we did during their creation.

```
> dt0090 <- dt90[dt00]
```

In this case dt 90 is the left side, dt 00 is the right side and a left join was performed.

12.3 reshape2

The next most common munging need is either melting data (going from column orientation to row orientation) or casting data (going from row orientation to column orientation). As with most other procedures in R , there are multiple functions available to accomplish these tasks but we will focus on Hadley Wickham's reshape2 package. (We talk about Wickham a lot because his products have become so fundamental to the R developer's toolbox.)

12.3.1 melt

Looking at the Aid_00s data.frame, we see that each year is stored in its own column. That is, the dollar amount for a given country and program is found in a different column for each year. This is called a cross table, which, while nice for human consumption, is not ideal for graphing with ggplot2 or for some analysis algorithms.

```
> head(Aid__00s)
```

Country.Name	Program. Name
1 Afghanistan	
2 Afghanistan	

We want it set up so that each row represents a single country-program-year entry with the dollar amount stored in one column. To achieve this we melt the data using melt from reshape2.

```
> require(reshape2)
> melt00 <- melt(Aid_00s, id.vars=c("Country.Name", "Program.Name"),
+ variable.name="Year", value.name="Dollars")
> tail(melt00, 10)
\begin{tabular}{cr} 
Country.Name \\
24521 & \begin{tabular}{c} 
Zimbabwe \\
24522
\end{tabular} \\
Zimbabwe \\
24523 & Zimbabwe \\
24524 & Zimbabwe \\
24525 & Zimbabwe \\
24526 & Zimbabwe \\
24527 & Zimbabwe \\
24528 & Zimbabwe \\
24529 & Zimbabwe \\
24530 & Zimbabwe
\end{tabular}
\begin{tabular}{lrr}
24523 & Nonproliferation, Anti-Terrorism, Demining and Related FY2009 \\
24524 & Other Active Grant Programs FY2009 \\
24525 & Other Food Aid Programs FY2009 \\
24526 & Other State Assistance FY2009 \\
24527 & Other USAID Assistance FY2009 \\
24528 & Peace Corps FY2009 \\
24529 & Nollars & Title I FY2009 \\
24530 & NA & \\
24521 & 3627384 & \\
24522 & NA & \\
24523 & NA & \\
24524 & 7951032 & \\
24525 & NA & \\
24526 & 2193057 &
\end{tabular}

The id.vars argument specifies which columns uniquely identify a row.
After some manipulation of the Year column and aggregating, this is now prime for plotting, as shown in Figure 12.1. The plot uses faceting allowing us to quickly see and understand the funding for each program over time.
```

> require(scales)
> \# strip the "FY" out of the year column and convert it to numeric
> melt00$Year <- as.numeric(str_sub(melt00$Year, start=3, 6))
> \# aggregate the data so we have yearly numbers by program
> meltAgg <- aggregate(Dollars ~ Program.Name + Year, data=melt00,

+ sum, na.rm=TRUE)
> \# just keep the first 10 characters of program name
> \# then it will fit in the plot
> meltAgg$Program.Name <- str_sub(meltAgg$Program.Name, start=1,
+ end=10)
>
> ggplot(meltAgg, aes(x=Year, y=Dollars)) +
+ geom_line(aes(group=Program.Name)) +
+ facet_wrap(~ Program.Name) +
+ scale_x_continuous(breaks=seq(from=2000, to=2009, by=2)) +
+ theme(axis.text.x=element_text(angle=90, vjust=1, hjust=0)) +
+ scale_y_continuous(labels=multiple_format(extra=dollar,
+ multiple="B"))

```


Figure 12.1 Plot of foreign assistance by year for each of the programs.

\subsection*{12.3.2 dcast}

Now that we have the foreign aid data melted, we cast it back into the wide format for illustration purposes. The function for this is dcast, and it has trickier arguments than melt. The first is the data to be used, in our case melt 00 . The second argument is a formula where the left side specifies the columns that should remain columns and the right side specifies the columns that should become row names. The third argument is the column (as a character) that holds the values to be populated into the new columns representing the unique values of the right side of the formula argument.
```

> cast00 <- dcast(melt00, Country.Name + Program.Name ~ Year,

+ value.var = "Dollars")
> head(cast00)

```
    Country.Name Program.Name 2000
1 Afghanistan Child Survival and Health NA
2 Afghanistan Department of Defense Security Assistance NA
3 Afghanistan Development Assistance NA


\subsection*{12.4 Conclusion}

Getting the data just right to analyze can be a time-consuming part of our work flow, although it is often inescapable. In this chapter we examined combining multiple datasets into one and changing the orientation from column based (wide) to row based (long). We used plyr, reshape 2 and data.table along with base functions to accomplish this. This chapter combined with Chapter 11 covers most of the basics of data munging with an eye to both convenience and speed.

This page intentionally left blank

\section*{General Index}

\section*{A}

\section*{Addition}
matrices, 68
order of operation, 36
vectors, 44-45
Aggregation
in data.table package, 135-138
groups, 120-123
AICC, 320
Akaike Information Criterion (AIC), 255-257, 259-260
@aliases tag, 382
all.obs option, 196
Ampersands (\&) in compound tests, 111
Analysis of variance (ANOVA) alternative to, 214-216
cross-validation, 259-260
model comparisons, 254
overview, 207-210
And operator in compound tests, 111-112
Andersen-Gill analysis, 244-245
Angle brackets ( \(<>\) )
packages, 375
regular expressions, 169
ANOVA. See Analysis of variance (ANOVA)
Ansari-Bradley test, 204
Appearance options, 21-22
Appending elements to lists, 68
apt-get mechanism, 2
Arguments
C++ code, 385
CSV files, 74
functions, 49, 100-102
ifelse, 110
package documentation, 380
Arithmetic mean, 187
ARMA model, 315
Arrays, 71-72
Assigning variables, 36-37
Asterisks ( \(\star\) )
Markdown, 368
multiple regression, 228
NAMESPACE file, 377
vectors, 44
Attributes for data.frame, 54
Author information
\(\mathrm{LAT}_{\mathrm{E}} \mathrm{X}\) documents, 360
packages, 375
@author tag, 382
Autocompleting code, 15-16
Autocorrelation, 318
Autoregressive (AR) moving averages, 315-322
Average linkage methods, 352, 355
Axes in nonlinear least squares model, 298

\section*{B}

Back ticks (`) with functions, 49
Backslashes ( \(\backslash\) ) in regular expressions, 166
Base graphics, 83-84
boxplots, 85-86
histograms, 84
scatterplots, 84-85
Bayesian Information Criterion (BIC), 255-257, 259
Bayesian shrinkage, 290-294
Beamer mode in \(\mathrm{LAT}_{\mathrm{E}} \mathrm{X}, 369\)
Beginning of lines in regular expressions, 167
Bell curve, 171
Bernoulli distribution, 176
Beta distribution, 185-186
BIC (Bayesian Information Criterion), 255-257, 259
Binary files, 77-79
Binomial distribution, 176-181, 185-186
Bioconductor, 373
BitBucket repositories, 25, 31
Books, 394
bootstrap, 262-265

Boxplots
ggplot2, 91-94
overview, 85-86
break statement, 115-116
Breakpoints for splines, 302
Building packages, 383-384
Byte-compilation for packages, 376
ByteCompile field, 376

\section*{C}

C++ code, 384-383
package compilation, 387-390
sourceCpp function, 385-387
cache option for knitr chunks, 365
Calling functions, 49
arguments, 100
C++, 384
conflicts, 33
Carets ( \({ }^{\wedge}\) ) in regular expressions, 167
Case sensitivity
characters, 40
package names, 384
regular expressions, 162
variable names, 38
Cauchy distribution, 185-186
Cauchy priors in Bayesian shrinkage, 293-294
Causation vs. correlation, 199
Censored data in survival analysis, 240-241
Centroid linkage methods, 352, 355
Change Install Location option, 9
character data, 40
Charts, 329
chartsnthings site, 393
Chi-Squared distribution, 185-186
Chunks
IATEX program, 362-365
Markdown, 368
Citations in \(\mathrm{EAT}_{\mathrm{E}} \mathrm{X}\) documents, 366
Classification trees, 311

Clusters, 337
hierarchical, 352-357
K-means algorithm, 337-345
PAM, 345-352
registering, 283
code
autocompleting, 15-16
C++, 384-390
indenting, 99
running in parallel, 282
Code Editing options, 21
Coefficient plots
Bayesian shrinkage, 292-294
Elastic Net, 289-290
logistic regression, 236
model comparisons, 253-254
multiple regression, 226-228, 230-231
Poisson regression, 237-240
residuals, 247, 249
VAR, 324-325
Collate field for packages, 375-376
Colons (:)
vectors, 44-45
Color
boxplots, 92
K-means algorithm, 339, 341
LATEX documents, 362
line graphs, 96
PAM, 350-351
scatterplots, 88-90
Column index for arrays, 71
Columns
cbind and rbind, 141-142
data.frame, 53, 58
data.table, 131-133
matrices, 68-70
Comma separated files (CSVs), 73-74
Command line interface, 14-15
comment option, 365
Comments, 46
knitr chunks, 365
package documentation, 381
Community edition, 10-11
Comparing
models, 253-257
multiple groups, 207-210
multiple variables, 192
vectors, 46
Compilation in \(\mathrm{C}++\)
code, 384
packages, 387-390
Complete linkage methods, 352, 355
complete.obs option, 196

Components, installing, 5
Compound tests, 111-112
Comprehensive R Archive Network (CRAN), 1, 29, 384
Concatenating strings, 155-156
Conferences, 393
Confidence intervals
ANOVA, 207-209, 215-216
bootstrap, 262, 264-265
Elastic Net, 277, 279
GAM, 310
multiple regression, 226
one-sample t-tests, 200-203
paired two-sample t-tests, 207
two-sample t-tests, 205-206
Control statements, 105
compound tests, 111-112
if and else, 105-108
ifelse, 109-111
switch, 108-109
Converting shapefile objects into data.frame, 349
Correlation and covariance, 191-200
Covariates in simple linear regression, 211
Cox proportional hazards model, 242-244
.cpp files, 386
CRAN (Comprehensive R Archive
Network), 1, 29, 384
Create Project options, 16-17
Cross tables, 149
Cross-validation
Elastic Net, 276-277
overview, 257-262
CSVs (comma separated files), 73-74
Cubic splines, 302
Curly braces (\{\})
functions, 99
if and else, 106-107
regular expressions, 166

\section*{D}

Data
censored, 240-241
missing. See Missing data
Data Analysis Using Regression and Multilevel/Hierarchical Models, 50, 291, 394
data folder, 373-374
data.frames, 53-61
converting shapefile objects into, 349
ddply function, 124, 126
Elastic Net, 272
joins, 145
merging, 143-144
Data Gotham conference, 393
Data meetups, 391
Data munging, 117
Data reshaping, 141
cbind and rbind, 141-142
joins, 142-149
reshape2 package, 149-153
Data structures, 53
arrays, 71-72
data.frame, 53-61
lists, 61-68
matrices, 68-71
Data types, 38
C++ code, 387
character, 40
dates, 40-41
logical, 41-43
matrices, 68
numeric, 38-39
vectors, 43-48
Databases, reading from, 75-76
Dates, 40-41
LATEX documents, 360
packages, 375
Decision trees, 310-312
\(\backslash\) DeclareGraphics Extensions, 360
Default arguments, 101-102
Degrees of freedom
ANOVA, 215
multiple regression, 225
splines, 300
t-tests, 201-202
Delimiters in CSV files, 74
Delta in model comparisons, 258
Dendrograms
ggplot2, 87-88
hierarchical clustering, 352
normal distribution, 172-173
Density plots, 87-88, 184, 207
Dependencies in packages, 30
Dependent variables in simple linear regression, 211
Depends field
C++ code, 386
packages, 375
Description field, 374-375
DESCRIPTION file, 374-377
@ description tag, 382
Destination in installation, 4-5
@details tag, 382
dev option for knitr chunks, 365
Deviance in model comparisons, 256
Diffing process, 318-319
Dimensions in K-means algorithm, 339
direction argument, 265
Directories
creating, 18
installation, 4
names, 18
Distance between clusters, 352
Distance metric for K-means algorithm, 337
Distributions. See Probability distributions
Division
matrices, 68
order of operation, 36
vectors, 44-45
Documentation
functions, 49
packages, 380-383
\(\backslash\) documentclass, 360
Documents as R resources, 394
Dollar signs (\$)
data.frame, 56
multiple regression, 225
regular expressions, 167
\%dopar\% operator, 284
dot-dot-dot argument (...), 102
Downloading R, 1-2
DSN connections, 75
Dynamic Documents with \(R\) and knitr, 394
dzslides format, 369

\section*{E}
echo option for knitr chunks, 365
EDA (Exploratory data analysis), 83, 199, 219
Elastic Net, 271-290
Elements of Statistical Learning: Data Mining, Inference, and Prediction, 394
End of lines in regular expressions, 167
engine option for knitr chunks, 365
Ensemble methods, 312
Environment, 13-14
command line interface, 14-15
RStudio. See RStudio overview
Equal to symbol (=)
if and else, 105
variable assignment, 36
Equality of matrices, 68
Esc key in command line
commands, 15
eval option for knitr chunks, 365
everything option, 196
@examples tag, 382
Excel data, 74-75

Exclamation marks (!) in Markdown, 368
Expected value, 188
Experimental variables in simple linear regression, 211
Exploratory data analysis (EDA), 83, 199, 219
Exponential distribution, 185-186
Exponents, order of operation, 36
@ export tag, 382
Expressions, regular, 161-169
Extra arguments, 102
Extracting
data from Websites, 80-81
text, 157-161

\section*{F}

F distribution, 185-186
F-tests
ANOVA, 215
multiple regression, 225
simple linear regression, 214-215
two-sample, 204
faceted plots, 89-92
factor data type, 40
factors
as.numeric with, 160
Elastic Net, 273
storing, 60
vectors, 48
FALSE value
with if and else, 105-108
with logical operators, 41-43
fig.cap option, 365-366
fig.scap option, 365
fig.show option, 365
fill argument for histograms, 87
Fitted values against residuals plots, 249-251
folder structure, 373
for loops, 113-115
Forests, random, 312-313
formula interface
aggregation, 120-123
ANOVA, 208
Elastic Net, 272
logistic regression, 235-236
multiple regression, 224, 226, 230
scatterplots, 84-85
simple linear regression, 213
Formulas for distributions, 185-186
Frontend field for packages, 374
Functions
arguments, 100-102
assigned to objects, 99

C++, 384
calling, 49, 100
conflicts, 33
do.call, 104
documentation, 49
package documentation, 380
return values, 103

\section*{G}
g++ compiler, 385
Gamma distribution, 185-186
Gamma linear model, 240
GAMs (generalized additive models),
\[
304-310
\]

Gap statistic in K-means algorithm, 343-344
Garbage collection, 38
GARCH (generalized autoregressive conditional heteroskedasticity) models, 327-336
Gaussian distribution, 171-176
gcc compiler, 385
General options for RStudio tools, 20-21
Generalized additive models (GAMs), 304-310
Generalized autoregressive conditional heteroskedasticity (GARCH)
models, 327-336
Generalized linear models, 233
logistic regression, 233-237
miscellaneous, 240
Poisson regression, 237-240
Geometric distribution, 185-186
Git
integration with RStudio, 25-26
selecting, 19
Git/SVN option, 25
GitHub repositories, 25
for bugs, 392
package installation from, 31, 383
README files, 380
Graphics, 83
base, 83-86
ggplot2, 86-97
Greater than symbols ( \(>\) )
if and else, 105
variable assignment, 37
Groups, 117
aggregation, 120-123
apply family, 117-120
comparing, 207-210
data.table package, 129-138
plyr package, 124-129

\section*{H}

Hadoop framework, 117
Hartigan's Rule, 340-342
Hash symbols (\#)
comments, 46
Markdown, 368
package documentation, 381
pandoc, 369
header command in pandoc, 369
Heatmaps, 193
Hello, World! program, 99-100
Help pages in package documentation, 381
Hierarchical clustering, 352-357
Histograms, 84
bootstrap, 264
ggplot2, 87-88
multiple regression, 219
Poisson regression, 238
residuals, 253
Hotspot locations, 297-298
HTML tables, extracting data from, 80-81
Hypergeometric distribution, 185-186
Hypothesis tests in t-tests, 201-203


IDEs (Integrated Development
Environments), 13-14
if else statements, 105-108
Images in \(\mathrm{EAT}_{\mathrm{E}} \mathrm{X}\) documents, 360
@import tag, 382
Imports field for packages, 375
include option for knitr chunks, 365
Indenting code, 99
Independent variables in simple linear
regression, 211
Indexes
arrays, 71
data.table, 129
LATEX documents, 360
lists, 66
Indicator variables
data.frame, 60
Elastic Net, 273, 289-290
multiple regression, 225
PAM, 345
Inferences
ensemble methods, 312
multiple regression, 216
@inheritParams tag, 382
Innovation distribution, 330
Input variables in simple linear regression, 211
inst folder, 373-374
Install dependencies option, 30
install.packages command, 31
Install Packages option, 30
installing packages, 29-32, 383-384
installing R, 2
on Linux, 10
on Mac OS X, 8-10
on Windows, 2-7
integer type, 38-39
Integers in regular expressions, 166
Integrated Development
Environments (IDEs), 13-14
Intel Matrix Kernel Library, 10
Interactivity, 13
Intercepts
multiple regression, 216
simple linear regression, 212-213
Interquartile Range (IQR), 85-86
Introduction to R, 394
Inverse gaussian linear model, 240
IQR (Interquartile Range), 85-86
Italics in Markdown, 367
Iteration with loops, 113
controlling, 115-116
for, 113-115
while, 115


Joining strings, 155-156
Joins, 142-143
data.table, 149
merge, 143-144
plyr package, 144-149
Joint Statistical Meetings, 393

\section*{K}
k-fold cross-validation, 257-258
K-means algorithm, 337-345
K-medoids, 345-352
key columns with join, 144
keys for data.table package, 133-135
knots for splines, 302

\(L 1\) penalty, 271
L2 penalty, 271
Lags in autoregressive moving average, 318-319
lambda functions, 279-282, 285-289
Language selection, 3
lasso in Elastic Net, 271, 276, 279, 282
\(\mathrm{LAT}_{\mathrm{E}} \mathrm{X}\) program
installing, 359
knitr, 362-367
overview, 360-362
Leave-one-out cross-validation, 258
Legends in scatterplots, 89
Length
characters, 40
lists, 66-67
vectors, 45-46
Less than symbols (<) if and else, 105
variable assignment, 36
letters vector, 70
LETTERS vector, 70
Levels Elastic Net, 273
factors, 48,60
LICENSE file, 380
Licenses Mac, 8-9 packages, 373-375 SAS, 77
Windows, 3
Line breaks in Markdown, 367
Line graphs, 94-96
Linear models, 211
generalized, 233-240
multiple regression, 216-232
simple linear regression, 211-216
LinkingTo field, 386
Links
C ++ libraries, 386
hierarchical clustering, 352, 355
linear models, 240
Markdown, 368
Linux
C++ compilers, 385
downloading R, 1-2
installation on, 10
Lists
data.table package, 136-138
joins, 145-149
lapply and sapply, 118-119
Markdown, 367
overview, 61-68
Loading
packages, 32-33
rdata files, 162
log-likelihood in AIC model, 255
Log-normal distribution, 185-186
logical data type, 41-43
Logical operators compound tests, 111-112
vectors, 46

Logistic distribution, 185-186
Logistic regression, 233-237
Loops, 113
controlling, 115-116
for, 113-115
while, 115

\section*{M}

\section*{Mac}

C++ compilers, 385
downloading R, 1
installation on, 8-10
Machine learning, 304
Machine Learning for Hackers, 394
Machine Learning meetups, 391
Maintainer field for packages, 375
makeCluster function, 283
\(\backslash\) makeindex, 360
Makevars file, 386-389
Makevars.win file, 386-389
man folder, 373-374
MapReduce paradigm, 117
Maps
heatmaps, 193
PAM, 350-351
Markdown tool, 367-369
Math, 35-36
Matrices
with apply, 117-118
with cor, 192
Elastic Net, 272
overview, 68-71
VAR, 324
Matrix Kernel Library (MKL), 10
.md files, 369-371
Mean
ANOVA, 209
bootstrap, 262
calculating, 187-188
normal distribution, 171
Poisson regression, 237-238
t-tests, 203, 205
various statistical distributions, 185-186
Mean squared error in
cross-validation, 258
Measured variables in simple linear regression, 211
Meetups, 391-392
Memory in 64-bit versions, 2
Merging
data.frame, 143-144
data.table, 149
Minitab format, 77

Minus signs (-) in variable assignment, 36-37
Missing data, 50
apply, 118
cor, 195-196
cov, 199
mean, 188
NA, 50
NULL, 51
PAM, 346
MKL (Matrix Kernel Library), 10
Model diagnostics, 247
bootstrap, 262-265
comparing models, 253-257
cross-validation, 257-262
residuals, 247-253
stepwise variable selection, 265-269
Moving average (MA) model, 315
Moving averages, autoregressive, 315-322
Multicollinearity in Elastic Net, 273
Multidimensional scaling in K-means algorithm, 339
Multinomial distribution, 185-186
Multinomial regression, 240
Multiple group comparisons, 207-210
Multiple imputation, 50
Multiple regression, 216-232
Multiple time series in VAR, 322-327
Multiplication
matrices, 69-71
order of operation, 36
vectors, 44-45
Multivariate time series in VAR, 322

\section*{N}
na.or.complete option, 196
na.rm argument
cor, 195-196
mean, 188
standard deviation, 189
NA value
with mean, 188
overview, 50
Name-value pairs for lists, 64
Names
arguments, 49, 100
data.frame columns, 58
directories, 18
lists, 63-64
packages, 384
variables, 37-38
vectors, 47
names function for data.frame, 54-55

NAMESPACE file, 377-379
Natural cubic splines, 302
Negative binomial distribution, 185-186
Nested indexing of list elements, 66
NEWS file, 379
Nodes in decision trees, 311-312
Noise
autoregressive moving average, 315
VAR, 324
Nonlinear models, 297
decision trees, 310-312
generalized additive model, 304-310
nonlinear least squares model, 297-299
random forests, 312-313
splines, 300-304
Nonparametric Ansari-Bradley test, 204
Normal distribution, 171-176
Not equal symbols \((!=)\) with if and else, 105
nstart argument, 339
Null hypotheses
one-sample t-tests, 201-202
paired two-sample t-tests, 207
NULL value, 50-51
Numbers in regular expressions, 165-169
numeric data, 38-39

\section*{0}

Objects, functions assigned to, 99
Octave format, 77
\(1 / \mathrm{mu}^{\wedge} 2\) function, 240
One-sample t-tests, 200-203
Operations
order, 36
vectors, 44-48
Or operators in compound tests, 111-112
Order of operations, 36
Ordered factors, 48
out.width option, 365
Outcome variables in simple linear regression, 211
Outliers in boxplots, 86
Overdispersion in Poisson regression, 238
Overfitting, 312

\section*{\(P\)}
p-values
ANOVA, 208
multiple regression, 225
t-tests, 200-203
Package field in DESCRIPTION file, 374-377
Packages, 29, 373
building, 33
C++ code, 384-390
checking and building, 383-384
compiling, 387-390
DESCRIPTION file, 374-377
documentation, 380-383
files overview, 373-374
folder structure, 373
installing, 29-32, 383-384
loading, 32-33
miscellaneous files, 379-380
NAMESPACE file, 377-379
options, 23
submitting to CRAN, 384
uninstalling, 32
unloading, 33
Packages pane, 29-30
Paired two-sample t-tests, 206-207
pairwise.complete option, 197
PAM (Partitioning Around Medoids), 345-352
pandoc utility, 369-371
Pane Layout options, 21-22
Parallel computing, 282-284
@param tag, 381-382
Parentheses ()
arguments, 100
compound tests, 111
expressions, 63
functions, 99
if and else, 105
order of operation, 36
regular expressions, 163
Partial autocorrelation, 318-319
Partitioning Around Medoids (PAM), 345-352
Passwords in installation, 9
Patterns, searching for, 161-169
PDF files, 362, 369
Percent symbol (\%) in pandoc, 369
Periods (.)
uses, 99
variable names, 37
Plots
coefficient. See Coefficient plots faceted, 89-92

Q-Q, 249, 252
residuals, 250-251
scatterplots. See Scatterplots silhouette, 346-348
Plus signs (+) in regular expressions, 169
Poisson distribution, 182-184
Poisson regression, 237-240
POSIXct data type, 40
Pound symbols (\#)
comments, 46
Markdown, 368
package documentation, 381
pandoc, 369
Prediction in GARCH models, 335
Predictive Analytics meetups, 391
Predictors
decision trees, 310-311
Elastic Net, 272
generalized additive models, 304
logistic regression, 233
multiple regression, 216-217 simple linear regression, 211, 213 splines, 302-303
Priors, 290, 293-294
Probability distributions, 171 binomial, 176-181 miscellaneous, 185-186 normal, 171-176
Poisson, 182-184
Program Files \(\backslash \mathrm{R}\) directory, 4
Projects in RStudio, 16-19
prompt option for knitr chunks, 365

\section*{Q}

Q-Q plots, 249, 252
Quantiles
binomial distribution, 181
multiple regression, 225
normal distribution, 175-176
summary function, 190
Quasibinomial linear model, 240
Quasipoisson family, 239
Question marks (?)
with functions, 49
regular expressions, 169
Quotes (") in CSV files, 74

\section*{R}

R-Bloggers site, 393
R CMD commands, 383
R Enthusiasts site, 393

R folder, 373-374
R in Finance conference, 393
R Inferno, 394
R Productivity Environment (RPE), 26-27
Raise to power function, 45
Random numbers
binomial distribution, 176
normal distribution, 171-172
Random starts in K-means algorithm, 339
Rcmdr interface, 14
.Rd files, 380, 383
RData files
creating, 77
loading, 162
Readability of functions, 99
Reading data, 73
binary files, 77-79
CSVs, 73-74
from databases, 75-76
Excel, 74-75
included with R, 79-80
from statistical tools, 77
README files, 380
Real-life resources, 391
books, 394
conferences, 393
documents, 394
meetups, 391-392
Stack Overflow, 392
Twitter, 393
Web sites, 393
Reference Classes system, 377
Registering clusters, 283
Regression
generalized additive models, 304
logistic, 233-237
multiple, 216-232
Poisson, 237-240
simple linear, 211-216
survival analysis, 240-245
Regression to the mean, 211
Regression trees, 310
Regular expressions, 161-169
Regularization and shrinkage, 271
Bayesian shrinkage, 290-294
Elastic Net, 271-290
Relationships
correlation and covariance, 191-200
multiple regression, 216-232
simple linear regression, 211-216
Removing variables, 37-38
Repeating command line commands, 15

Reshaping data, 141
cbind and rbind, 141-142
joins, 142-149
reshape2 package, 149-153
Residual standard error in least squares model, 298
Residual sum of squares (RSS), 254-255
Residuals, 247-253
Resources. See Real-life resources
Responses
decision trees, 310
logistic regression, 233
multiple regression, 216-217, 219, 225
Poisson regression, 237
residuals, 247
simple linear regression, 211-213
@return tag, 381-382
Return values in functions, 103
Revolution Analytics site, 393
Ridge in Elastic Net, 271, 279
.Rmd files, 369
.Rnw files, 362
Rows
in arrays, 71
bootstrap, 262
cbind and rbind, 141-142
data.frame, 53
data.table, 131
with mapply, 120
matrices, 68-70
RPE (R Productivity Environment), 26-27
RSS (residual sum of squares), 254-255
RStudio overview, 15-16
Git integration, 25-26
projects, 16-19
tools, 20-25
RTools, 385
Run as Administrator option, 3
Running code in parallel, 283

\section*{S}

S3 system, 377
@ S3method tag, 382
S4 system, 377
s5 slide show format, 369
SAS format, 77
Scatterplots, 84-85
correlation, 192
generalized additive models, 307
ggplot2, 88-91
multiple regression, 220-224
splines, 303
scope argument, 265
Scraping web data, 81
Seamless \(R\) and \(C++\) Integration with Rcpp, 394
Searches, regular expressions for, 161-169
Secret weapon, 293
Sections in \(\mathrm{AT}_{\mathrm{E}} \mathrm{X}\) documents, 361
@ seealso tag, 382
Seeds for K-means algorithm, 338
Semicolons (;) for functions, 100
sep argument, 155
Shapefile objects, converting into data.frame, 349
Shapiro-Wilk normality test, 204
Shortcuts, keyboard, 15
Shrinkage
Bayesian, 290-294
Elastic Net, 271
Silhouette plots, 346-348
Simple linear regression
ANOVA alternative, 214-216 overview, 211-214
Single linkage methods, 352, 355
64-bit vs. 32-bit R, 2
Size
binomial distributions, 176-179
lists, 65
sample, 187
Slashes (/) in C++ code, 385-386
Slide show formats, 369
slideous slide show format, 369
slidy format, 369,371
Slope in simple linear regression, 212-213
Small multiples, 89
Smoothing functions in GAM, 304
Smoothing splines, 300-301
Software license, 3
Spelling options, 23-24
Splines, 300-304
Split-apply-combine method, 117, 124
SPSS format, 77
Square brackets ([])
arrays, 71
data.frame, 56, 58
lists, 65
Markdown, 368
vectors, 47
Squared error loss in nonlinear least squares model, 297
src folder, 373-374, 387
Stack Overflow source, 392

Standard deviation
missing data, 189
normal distribution, 171
simple linear regression, 213
t-tests, 201-202, 205
Standard error
Elastic Net, 279, 289
least squares model, 298
multiple regression, 225-226
simple linear regression, 213-216
t-tests, 202
start menu shortcuts, 6
startup options, 5
Stata format, 77
Stationarity, 318
Statistical graphics, 83
base, 83-86
ggplot2, 86-97
Statistical tools, reading data from, 77
Stepwise variable selection, 265-269
Strings, 155
joining, 155-156
regular expressions, 161-169
sprintf, 156-157
text extraction, 157-161
stringsAsFactors argument, 75
Submitting packages to CRAN, 384
Subtraction
matrices, 68
order of operation, 36
vectors, 44-45
Suggests field in packages, 375-376
Summary statistics, 187-191
Survival analysis, 240-245
SVN repository, 17, 19, 25
switch statements, 108-109
Systat format, 77

t distribution
functions and formulas, 185-186
GARCH models, 330
t-statistic, 201-202, 225
t-tests, 200
multiple regression, 225
one-sample, 200-203
paired two-sample, 206-207
two-sample, 203-206
Tab key for autocompleting code, 15
Tables of contents in pandoc, 371
Tags for roxygen2, 381-382
Tensor products, 308
test folder, 374

Text
extracting, 157-161
\({ }^{\mathrm{AT}} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) documents, 362
regular expressions, 167-169
Themes in ggplot2, 96-97
32 -bit vs. 64-bit R, 2
Tildes ( \(\sim\) ) in aggregation, 120
Time series and autocorrelation, 315 autoregressive moving average, 315-322
GARCH models, 327-336
VAR, 322-327
Title field, 374-375
@title tag, 382
Titles
help files, 381
\({ }^{\mathrm{LA}} \mathrm{E}_{\mathrm{E}} \mathrm{X}\) documents, 360
packages, 374-375
slides, 369
Transposing matrices, 70
Trees
decision, 310-312
hierarchical clustering, 354
TRUE value
with if and else, 105-108
with logical operators, 41-43
Twitter resource, 393
Two-sample t-tests, 203-206
Type field for packages, 374-375
Types. See Data types

\section*{U}

Underscores (-)
Markdown, 367
variable names, 37
Unequal length vectors, 46
Uniform (Continuous) distribution, 185-186
Uninstalling packages, 32
Unloading packages, 33
@useDynLib tag, 382
useful package, 273, 341

UseMethod command, 377
useR! conference, 393
User installation options, 9

\section*{V}

VAR (vector autoregressive) model, 322-327
Variables, 36
assigning, 36-37
names, 37
relationships between, 211-216
removing, 37-38
stepwise selection, 265-269
Variance, 189
ANOVA, 207-210
GARCH models, 327
Poisson regression, 238
t-tests, 203
various statistical distributions, 185-186
Vector autoregressive (VAR) model, 322-327
Vectorized arguments with ifelse, 110
Vectors, 43-44
data.frame, 56
factors, 48
in for loops, 113-114
multiple regression, 217
multiplication, 44-45
operations, 44-48
paste, 155-156
sprintf, 157
Version control, 19
Version field for packages, 375
version number, saving, 6-7
Versions, 2
Vertical lines (I) in compound tests, 111
vim mode, 21
Violins plots, 91-94
Volatility in GARCH models, 330

\section*{W}

Weakly informative priors, 290 Websites
extracting data from, 80-81
R resources, 393
Weibull distribution, 185-186
Welch two-sample t-tests, 203
while loops, 115
White noise
autoregressive moving average, 315
VAR, 324
WiFi hotspot locations, 297-298
Windows
C++ compilers, 385
downloading R, 1
installation on, 2-7
Windows Live Writer, 15
within-cluster dissimilarity, 343
Wrapper functions, 386
Writing R Extensions, 394
\begin{tabular}{l}
X \\
\begin{tabular}{l} 
X-axes in nonlinear least squares \\
model, 298 \\
Xcode, 385
\end{tabular} \\
Y \\
\hline
\end{tabular}

Y -axes in nonlinear least squares model, 298
y-intercepts
multiple regression, 216
simple linear regression, 212-213

\section*{Z}

Zero Intelligence Agents site, 393
zypper mechanism, 2```


[^0]:    1. http://slice.seriouseats.com/archives/2010/03/the-moneyball-of-pizza-
